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Abstract Glycerol dialkyl glycerol tetraethers (GDGTs) are valuable proxies for reconstructing past
environmental conditions but sources of analytical uncertainty remain unresolved, as highlighted by a recent
inter‐laboratory comparison project. Analytical uncertainties owe in part to subjective solutions to manual peak
integration, including baseline corrections, peak deconvolution, and signal smoothing. Here, we present
chromatoPy, an open‐source Python package implementing a multi‐Gaussian fitting algorithm that
automatically models peak co‐elution while requiring user approval of the fitted results, thereby improving peak
area integration accuracy, enhancing reproducibility, and reducing the time required for peak processing. We
evaluate chromatoPy through inter‐user comparisons and against manual integration using a global data set of
GDGTs from marine, lacustrine, and loess sediments, demonstrating high concordance in peak areas and
fractional abundances for both branched and isoprenoid GDGTs. Subtle but systematic differences are observed
primarily for branched GDGTs prone to co‐elution, which is consistent with the deconvolution approach
employed. By reducing analyst subjectivity and providing uncertainty estimates, chromatoPy facilitates more
comparable GDGT measurements across laboratories and data sets, thereby strengthening the foundations of
GDGT‐based paleoclimate and biogeochemical reconstructions. The package significantly decreases
processing time while providing quantitative uncertainty estimates using Monte Carlo error propagation,
enabling rapid replicate analyses. chromatoPy thus offers a robust, user‐friendly tool that enhances
reproducibility and will ultimately yield more reliable paleoclimate reconstructions.

1. Introduction
Glycerol dialkyl glycerol tetraethers (GDGTs) have become increasingly popular proxies for reconstructing
paleoenvironmental conditions. This popularity owes to their ability to record multiple environmental parameters
(e.g., temperature, pH, conductivity; Raberg et al., 2021) during synthesis by a diverse and incompletely char-
acterized suite of microbes (e.g., Chen et al., 2022; Sinninghe Damsté et al., 2011; Weijers et al., 2006; Zeng
et al., 2022). Additionally, the ubiquity (e.g., Raberg et al., 2022) and persistence (e.g., Naafs et al., 2018; Oti-
niano et al., 2020) of GDGTs in the geological record ensure broad spatial and temporal applicability, making
them exceptionally valuable for climate reconstructions.

The methods for GDGT extraction from environmental matrices are well established, and since their initial
identification, advancements in High Pressure Liquid Chromatography Mass Spectrometry (HPLC‐MS) have
improved the analytical procedures for measuring these compounds (e.g., Becker et al., 2015; De Jonge
et al., 2013; Hopmans et al., 2016; Rattray & Smittenberg, 2020). However, a comparison of GDGT compound
quantification between 44 laboratories found discrepancies in the final compound concentrations, with replicate
measurements of branched and isoprenoid GDGTs exhibiting standard deviations ranging from 61% to 105% of
the mean concentration values (De Jonge et al., 2024). These results indicate substantial interlaboratory variance,
owing in part to differences in peak integration practices (De Jonge et al., 2024). Indeed, the application and
method for correcting baseline shifts in HPLC‐MS data, determining the extent of peak tails, and integrating co‐
eluting peaks are not standardized practices and are likely causes of variability between laboratory groups and
individual researchers (De Jonge et al., 2024).

Here, we introduce a software package, chromatoPy, which offers a user‐friendly environment where researchers
can pre‐process, visualize, and integrate HPLC‐MS chromatography data, and output results. In contrast to
proprietary software for chromatography, chromatoPy is open‐source, promoting reproducibility and collabo-
ration for researchers currently, or interested in, analyzing GDGTs. We evaluate the performance and
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reproducibility of chromatoPy for the quantitative analysis of GDGTs. Specifically, we test the reliability of
chromatoPy through inter‐user comparisons and against manually integrated data sets, assessing agreement in
peak areas, fractional abundances, and a commonly used temperature proxy (MBTʹ5Me). These comparisons
allow us to determine whether chromatoPy produces results consistent with expert manual integration while also
revealing potential systematic differences that may arise from the Gaussian deconvolution framework. Addi-
tionally, we assess the quantitative uncertainty estimates generated by chromatoPy to evaluate how well the
modeled peaks fit the observed signal and to determine whether uncertainty can thus as a diagnostic indicator of
potential challenges in peak integration or chromatographic quality. Together, these analyses establish a
foundation for transparent, reproducible, and quantitively robust GDGT data processing.

2. Methods and Materials
High Pressure Liquid ChromatographyMass Spectrometry analysis of GDGTs produces chromatograms in which
each trace corresponds to an ionmass‐to‐charge ratio (m/z) and records ion intensity as a function of retention time.
These multidimensional data are typically exported from instrument‐specific software in proprietary binary for-
mats that require conversion before further processing. ChromatoPy operates downstream of this step, providing a
semi‐automated framework for chromatographic peak identification, deconvolution, and integration (Figure 1).

As a general overview of the workflow (Figure 1), the user first provides chromatoPy with the raw chromato-
graphic data as comma‐separated value (CSV) files and select the GDGT classes to be analyzed. The software
applies baseline and retention‐time corrections across all samples and then displays chromatograms for the first
sample. The user selects the peaks of interest in this first sample and the corresponding retention times are then
stored as references for chromatoPy to identify and integrate peaks in subsequent samples. This workflow enables
efficient and consistent processing across large data sets while preserving user oversight to verify automatic peak
selections and identify potential chromatographic or analytical issues.

We wrote chromatoPy in Python, using a number of readily available packages (Table 1). ChromatoPy reads
chromatography data formatted as CSV files that follow a specific column structure and header convention. In its
current configuration, this format is derived from Agilent's ChemStation output processed through the open‐
source package rainbow (https://github.com/evanyeyeye/rainbow). A wrapper of rainbow is included within
chromatoPy as an optional preprocessing tool to facilitate conversion of ChemStation binary files to the required
CSV structure. Although we cannot guarantee compatibility with data exported from other HPLC software
platforms without additional preprocessing or modification, chromatoPy can process raw HPLC data from any
instrument provided that the data are exported or reformatted to match the expected CSV layout. Users may
generate such CSVs directly from their own acquisition software or employ conversion tools such as rainbow.
The raw data used in this study are archived on Zenodo (Otiniano et al., 2025) and serve as examples of the
required format for preparing and verifying users.

2.1. GDGT Testing Data Set

To assess the accuracy of chromatoPy's peak integration, we processed the raw data of 84 samples previously
analyzed for GDGTs using proprietary software, Agilent's ChemStation (Table 2). Lipid extraction and GDGT
quantification methods were consistent across sample sets following the procedure described in Schneider
et al. (2024). The GDGTs were originally measured at UMass using an Agilent 1,260 High‐Performance Liquid
Chromatograph coupled to an Agilent 6,120 Quadrupole Mass Spectrometer following the analytical method
outlined by Hopmans et al. (2016). These samples represent a range of environments, from tropical to polar, and
reflect sites that differ substantially in GDGT distributions (e.g., branched vs. isoprenoid dominated) and con-
centrations (Table 2). We also compare the two methods on a timeseries record using a sediment core from Lake
Bolshoye Shchuchye, Russia, which spans the past 24 kyr (n = 55) (Haflidason et al., 2022). The majority of
samples were analyzed for brGDGTs (15 unique structures) and isoGDGTs (6 unique structures) with the
exception of six samples, in which only isoGDGTs were processed, yielding 1,668 potentially identifiable peaks
(Table 2). We did not assess performance on hydroxylated isoprenoid GDGTs (OH‐GDGTs) or glycerol mon-
oalkyl glycerol tetraethers (GMGTs).

Importantly, ChemStation and chromatoPy process data using different time units (minutes and seconds,
respectively), resulting in area units that are not directly comparable. We therefore implement two scaling tech-
niques to compare between integration methods. The first technique (“Scaled Peak Area”) scales all peaks to the
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largest peak area observed across all GDGTs and samples for each method independently. This scaling preserves
relative differences in area within each method while allowing comparison on common scale across methods. We

divide the peak area of each GDGT by the largest peak area observed across all
samples, for each integration method separately. The second technique inde-
pendently calculates fractional abundances of GDGTs from the original
(unscaled) peak areas, expressed relative to total isoprenoid (iso) or total
branched (br) GDGT within each sample, which is the typical format for
reportingGDGTdata. For this study,we target isoGDGTsGDGT‐0, GDGT‐1,
GDGT‐2, GDGT‐3, GDGT‐4, and GDGT‐4ʹ as well as brGDGTs Ia, IIa, IIIa,
IIaʹ, IIIaʹ, Ib, IIb, IIIb, IIbʹ, IIIbʹ, Ic, IIc, IIIc, IIcʹ, and IIIcʹ.

2.2. Development

One of the challenges in automating the identification and processing of
compounds measured via HPLC‐MS analysis (e.g., Hopmans et al., 2016) is
the non‐stationarity of retention times. Retention times can vary as a result of

Figure 1. Overview of the chromatoPy workflow. Workflow steps (gray, italicized) are shown with their associated
commands (orange, italicized). Fundamental steps are connected by solid arrows, while optional steps are indicated by
dashed arrows. Algorithmic processes (white) are summarized at the locations corresponding to where they occur in the
workflow.

Table 1
Python Packages and Version Numbers Used in chromatoPy

Package Version

Numpy 1.26.4

Pandas 2.2.2

Scikit‐learn 1.4.2

SciPy 1.13.1

Matplotlib 3.8.4

Rainbow 2.8.0

Pybaselines 1.1.0
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fluctuations in experimental conditions including but not limited to column temperature, mobile phase compo-
sition, flow rate, and column conditions, which affect the interaction between analytes and the stationary phase,
leading to changes in elution time. ChromatoPy attempts to automatically detect this variability by identifying a
shared reference peak in every sample. Assuming the samples were analyzed with a C46 glycerol trialkyl glycerol
tetraether internal standard (Huguet et al., 2006; Patwardhan & Thompson, 1999), the reference peak of this
standard (identified with a mass to‐charge ratio of 744) is used to apply a linear shift correction to the retention
time of each sample. Users may also specify an alternative GDGT of high prominence (e.g., GDGT‐0) that is
consistently present across their data set. The accuracy of the retention‐time correction was verified by comparing
the reference‐standard peaks identified by chromatoPy against the original chromatograms.

2.2.1. Signal Processing

To reduce noise and emphasize peak structures in the raw HPLC‐MS data, we employ a smoothing algorithm. We
implement a Savitzky‐Golay filter, a least squares polynomial fitting function (Savitzky & Golay, 1964) with a
default filter window of 12 data points, typically reflecting 14.7 s of data collection, and a third‐order polynomial.
The Savitzky‐Golay filter is an optimal smoothing function as it is computationally efficient and preserves signal‐
to‐noise ratios (Savitzky & Golay, 1964). It is important to acknowledge that the filter can introduce artifacts at
the margins of the data range (Schmid et al., 2022); however, given the 12‐point window and corresponding time
span, only the initial and final ∼7.4 s of the record are affected by these edge artifacts.

To correct for baseline shifts in the chromatography signal, we follow a similar approach to that of
(Mecozzi, 2014). We approximate the baseline using an iterative polynomial fitting function with a default order
of 5 and convergence tolerance of 10− 4 (Equation 1)

B(x) = a5x5 + a4x4 + a3x3 + a2x2 + a1x1 + a0 (1)

where B(x) is the baseline function, an denotes the nth coefficient, and x refers to the retention time. The coef-
ficient vector is determined by an iterative least‐squares fitting procedure. In each iteration k, the coefficients are
updated via Equation 2

ak+1 = V+yk (2)

where V+ denotes the pseudo‐inverse of the Vandermonde matrix constructed from the x‐values and yk is the
signal at iteration k. After computing B(x) with updated coefficients, the signal is modified by taking the element‐
wise minimum. The iterative process terminates when the relative change in the coefficient vector is below the
default tolerance, 10− 4.

Table 2
Summary of Sample Locations, Sediment Types, Age, Number of Samples, and Glycerol Dialkyl Glycerol Tetraether Types Analyzed in the Testing Data Set

Site Location Age Sediment type Sample count GDGT type

Lake Issyk‐Kul Kyrgyzstan Modern lacustrine 4 br‐, isoGDGTs

Lake El'gygytgyn, Siberia Modern lacustrine 3 br‐, isoGDGTs

– Croatia Modern lacustrine 3 br‐, isoGDGTs

Lake Malawi Mozambique Modern lacustrine 4 br‐, isoGDGTs

Lake Bolshoye Shchuchye Siberia Modern to 24 kyr cal BP (Haflidason et al., 2022) lacustrine 55 br‐, isoGDGTs

– Offshore of Northwest Africa Modern marine 3 br‐, isoGDGTs

– Offshore of Northwest Australia Modern marine 2 br‐, isoGDGTs

– Offshore of New Jersey Modern marine 1 br‐, isoGDGTs

ODP Site 846 – Miocene marine 3 isoGDGTs

ODP Site U1450 – Pliocene and Pleistocene marine 3 isoGDGTs

– Alaska Pleusticene loess 3 br‐, isoGDGTs
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To identify peaks in the signal, we use the function find_peaks from the package Scipy (Virtanen et al., 2020).
This function is effective as parameters of peak amplitude, width, and prominence can be used to filter for specific
conditions (Virtanen et al., 2020). For example, we use the minimum peak height argument to filter for peaks too
small for confident integration. Here, the minimum threshold is defined as three times the baseline variability
(Currie, 1995). We calculate baseline variability by filtering for regions of the baseline‐corrected signal without
peaks using the package pybaselines (Erb, 2024), calculating the standard deviation of this region, and then
multiplying the standard deviation by three. If a peak exceeds this threshold in the composite signal but falls
below it after deconvolution, chromatoPy treats the peak as absent.

2.2.2. Peak Fitting and Uncertainty

To identify the peak shape and ultimately calculate the area under the peak, we use a Gaussian fitting model
similar to (Fleming & Tierney, 2016). Gaussian fitting is achieved by first estimating initial Gaussian parameters
from the peak height, the width of the peak at 50% amplitude, and the retention time of the peak in the smoothed,
baseline‐corrected signal. We then iteratively modify these parameters to find the optimized fit via the Gaussian
equation (Equation 3)

y = amplitude × e−
(x− center)2

2×width2 (3)

where x is the retention time, y is the signal strength at x, center is the retention time at the middle of the peak,
amplitude is the signal strength at center (i.e., the maximum signal strength), and width is the span of time at half
maximum of the peak. The optimal peak‐fit is determined using curve_fit from the Scipy package with 4,000
iterations to achieve convergence. We define the peak boundaries where the first derivative on either side of the
peak is 0.1.

During peak fitting, we also calculate uncertainty associated with the iterative peak fitting process using Monte
Carlo error propagation (e.g., Anderson, 1976), by quantifying the variability of the fitted Gaussian parameters.
The curve_fit function operates similarly to the iterative polynomial fitting function (Section 2.2.1), outputting a
set of optimized parameters for the fitted equation and the covariance matrix used to derive these fitted values.
Opportunely, the uncertainty associated with the fitted parameters can be inferred from this covariance matrix by
calculating the standard deviation of the diagonal, yielding a confidence metric. ChromatoPy uses this uncertainty
to calculate an ensemble of signals and then integrates these synthetic signals using Scipy's Simpson function, an
integration of a signal y(x) along a range of x using Simpson's rule (Virtanen et al., 2020). Once a sample has been
processed, chromatoPy exports a JavaScript Object Notation file containing the peak fitting parameters and
associated uncertainty terms for each peak selected in the sample. The structure and contents of these files are
described in Text S1 in Supporting Information S1. Our novel incorporation of peak‐fit uncertainty is important
for subsequent data comparisons between samples and may ultimately improve uncertainty quantification of
environmental inferences from GDGTs.

2.2.3. Peak Deconvolution

The process of peak fitting must also address the challenge of co‐eluting peaks, which often arises from distinct
compounds with similar masses—such as isomers—that are difficult to separate via column chromatography.
This issue is especially pronounced for GDGTs, where high molecular masses and subtle structural differences
arising from the positions of methylations and cyclopentane moieties (e.g., De Jonge et al., 2013; Schouten
et al., 2002, 2007) complicate isomer separation. For GDGT quantitation, typical efforts to identify and calculate
the area under these curves involve declaring strict boundaries for the peaks that yield truncated peak areas.
Meanwhile, alternative approaches, such as fitting Gaussian distributions to the signal, do not consider the ad-
ditive effect of overlapping peaks, resulting in potentially overestimated peak areas (Fleming & Tierney, 2016).

We implement a multi‐Gaussian model to account for peak co‐elution. Multi‐Gaussian modeling is a robust
method for the deconvolution of peaks in chromatography data (e.g., Felinger, 1994; Johansson et al., 1993).
Subsequent studies have augmented this approach by incorporating more complex Gaussian mixing models and
distribution shapes to improve signal fitting (e.g., Vemula et al., 2017; Wei et al., 2014; Yu & Peng, 2010).
However, these approaches are, in comparison, computationally expensive. Here, we simplify the approach by
targeting GDGT quantitation from HPLC‐MS analysis in tandem with two assumptions. First, we assume that
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each peak follows a Gaussian distribution, as has been previously assumed for Gas Chromatograph and HPLC‐
MS data (Fleming & Tierney, 2016). Second, we assume that co‐eluting peaks are individually identifiable,
requiring that the maximum amplitudes of some pair of peaks are separated by a local minimum.

To deconvolve co‐eluting peaks, chromatoPy first defines a peak neighborhood, that is, a set of peaks whose
boundaries overlap. A composite model is constructed as the sum of individual Gaussian functions, each with its
own initial parameter estimates. This multi‐Gaussian model is then iteratively optimized, using curve_fit, to
capture incremental changes in the root mean square error (RMSE) between the composite model and the original
signal. The fitting routine is repeated for every combination of overlapping peaks by progressively removing the
farthest peak from the peak of interest, ensuring that all potential configurations are considered. The fitting
parameters for the selected peak are then extracted from the covariance of the multi‐Gaussian model and used to
calculate the peak area and associated uncertainty as explained in Section 2.2.2.

2.3. Implementation

When running chromatoPy, the user is first prompted for the type—or group of types—of GDGT data to be
analyzed (e.g., brGDGT and isoGDGT). Next, the user is prompted for the file locations of the raw data. Once
provided, the program creates an output folder in the same directory and loads the first chromatogram for
processing.

The first figure of each sample displays the internal standard. The user then identifies the peak of interest by
clicking near the peak; the identified peak area turns gray. For traces with several expected peaks, chromatoPy
relies on relative retention times to assign labels. In scenarios where a peak is absent from the chromatogram, the
user must click on its expected location, which will be marked by a vertical dashed‐line placeholder. The user can
advance to the next GDGT subset figure, or sample, using the enter key (Table 3).

The peak retention times recorded for each user‐selected GDGT in the first sample are stored as reference values,
enabling automatic peak identification in all subsequent samples. The user must view the peak integration for
each sample and accept these automatically identified peaks using the enter key, which also advances to the next
GDGT subset or sample. To update the reference retention times for all selected peaks in a current figure and all
subsequent samples, the user can use the T key, which will remove all automatically selected peaks. The user can
then select new peaks, which will be updated for the current GDGT subset and the rest of the samples in the
sequence. Alternatively, the user can scroll through the trace panels using the up and down keys and delete
automatically selected peaks in a given panel using the R key. This does not update selections for subsequent
samples. Finally, the user can also delete the last selected peak or place holder using the D key. Importantly,
reference peak times are only updated when using the T key.

After each sample is processed, either by the user or automatically, chromatoPy saves the calculated peak area (in
units of amplitude∙min) results to a CSV file and images of the integrated chromatograms as PNG files in the
subfolder created within the output folder. This means that a user can exit the program after completing a sample
without losing progress. Moreover, a sample can be reanalyzed by deleting the associated row from the CSV file
and rerunning the sample. Once complete, the user can run the function calculate_indices, which produces three
outputs: a CSV file containing the fractional abundances of GDGTs grouped by GDGT type, a CSV file con-
taining the fractional abundances of brGDGT methyl‐ and cyclic‐group sets, as defined by (Raberg et al., 2021),
and a CSV file containing the calculated indices (Table 4).

Table 3
User Keys and Descriptions of Subsequent Actions Available to the User in chromatoPy

Hotkey Description

up/down Select peak or place peak place‐holder

D Delete last selected peak or place‐holder

R Delete all selected peaks and place‐holders in a trace subplot

T Delete all selected peaks and place‐holders across all traces and
assigns current sample as the new reference

W Displays editable window boundaries
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3. Validation
3.1. Peak Identification

Of the possible 1,668 potentially identifiable peaks, chromatoPy and the
manual integration method commonly identified the presence or absence of
1,596 peaks (95.7%) (Figures 2a and 2b). ChromatoPy identified 16 peaks
that were not identified manually, reflecting minor, user‐specific differences
in time‐dependent GDGT selection. Conversely, the manual workflow re-
ported 62 peaks that chromatoPy rejected. Approximately half of these peaks
(n = 33) fell below chromatoPy's minimum amplitude threshold. These 33
peaks were predominantly GDGT‐3, GDGT‐4ʹ, IIcʹ, IIIbʹ, and IIIcʹ, which are
generally characterized by low abundance. The remaining 29 peaks did not
have a distinguishable minimum between adjacent maxima, and therefore
could not be separated by the multi‐Gaussian algorithm.

Two important insights can be drawn from this analysis. First, while the
chromatoPy minimum peak threshold successfully excludes low‐signal noise,
the threshold may cause expert‐identified peaks to be omitted. Second, co‐
elution where peaks are not adequately separated to yield a measurable

minimum remains a blind spot to chromatoPy's algorithm, even though manual integration may separate the
peaks. The peak amplitude and co‐elution scenarios introduce subjectivity into manual GDGT integration, as the
decision to integrate or discard challenging peaks will vary between analysts, a potential source of uncertainty in
GDGT integration (e.g., De Jonge et al., 2024). By contrast, chromatoPy provides a conservative, fully quanti-
tative approach that applies a consistent, transparent threshold to these scenarios. This not only enhances
reproducibility, reducing intra‐ and inter‐user variability, but also aligns with the best practices suggesting that
true co‐elution often requires instrumental re‐analysis for un‐ambiguous resolution (Fleming & Tierney, 2016).

The following sections focus on the 1,596 peaks recognized by both methods, allowing direct comparison of
integrated Scaled Peak Areas, Fractional Abundances, and associated uncertainties.

3.2. Inter‐User Comparison

To determine the potential influence of user decisions on peak areas integrated using chromatoPy, a second user
independently processed the full data set without any prior knowledge of the initial selection process. Considering
the 1,596 peaks, the associated peak areas (Figure 2c, Figure S1 in Supporting Information S1) and fractional
abundances (Figure 2d) independently calculated using chromatoPy are effectively identical, yielding Pearson's
correlation coefficients greater than 0.999 (p< 0.001) and equal to 0.998 (p< 0.001), respectively. Moreover, the
median percent difference between replicate analysis was low at 0.020% (1‐σ range: − 0.486% to 1.58%).
Importantly, 8 brGDGT peaks and 1 isoGDGT peak, in a total of 9 samples, were assigned differently by the two
users (11% of samples analyzed, 0.01% of all peaks identified) (Figures 2c and 2d). Excluding all other peaks from
samples containing these discordant assignments, given their impact on fractional abundance for all peaks in a
sample, the correlation coefficients for both peak area and fractional abundance are greater than 0.999, with a
median percent difference of 0.022% (1‐σ: − 0.457%—1.590%). This consistency underscores the robustness of
chromatoPy in generating reproducible peak area measurements.

Residual analysis of the chromatoPy peak area calculations by two different users (Figure 3a–3c) reveals rela-
tively minor but important differences that guide definition of a practical minimum area threshold for reliable
peak integration by chromatoPy. In general, the relative difference in calculated peak areas between users
(hereafter “replicate difference”) is inversely proportional to peak area size (Figures 3a and 3b), indicating greater
reproducibility for larger peaks. A threshold of approximately 400 amplitude∙minutes best separates the variance
in replicate differences. Below this threshold, the median percent difference in peaks is 0.6% with a 95% range
from − 15.1% to 17.7%, while for peaks above the threshold the median is 0.7% with a tighter 95% range from
− 2.0% to 10.0%. Similarly, replicate differences were more frequently explained by the 1‐σ peak area un-
certainties for larger peaks (89%) compared to smaller peaks (85%). Together, these results demonstrate that, in
general, replicate discrepancies in larger peaks are consistent with expected uncertainty (i.e., uncertainty asso-
ciated with peak area integration), while smaller peaks carry more unexplained variance.

Table 4
Indices and Associated References That Are Automatically Calculated Using
chromatoPy

Index Reference

MBTʹ5Me De Jonge et al. (2014)

CBT5Me De Jonge et al. (2014)

CBTʹ De Jonge et al. (2014)

IR6Me De Jonge et al. (2014)

DC Baxter et al. (2019)

Cald/Cren Zhang et al. (2016)

HP5 Yao et al. (2020)

BIT Hopmans et al. (2004)

fC Martínez‐Sosa and Tierney (2019)

Methylation set Raberg et al. (2021)

Cyclization set Raberg et al. (2021)
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In practice, peaks below the 400 amplitude∙minute threshold can be quantified, but should be interpreted with
caution as their replicate reproducibility is less certain. Although their median percent difference is relatively
small (0.7%), additional replication, such as multiple users independently processing the data, can provide a more
reliable assessment of user‐dependent variability. Opportunely, chromatoPy greatly reduces the time requirement
for processing samples. Manual peak integration can take upwards of 20 to 30 minutes per sample when pro-
cessing both br‐ and isoGDGTs, with processing times increasing further when OH‐GDGTs and GMGTs are
included. In comparison, per‐sample processing times using chromatoPy are an order of magnitude smaller, albeit
subject to computer resource availability. For reference, we ran chromatoPy on a 2022 Macbook Air equipped
with a M2 processor and 24 Gb of RAM.

Overall, chromatoPy facilitates reproducible peak area integration with minimal variability introduced by user
decisions. Differences in peak identification between users could be alleviated by measuring a sediment standard
with well resolved GDGT peaks at the beginning of each sequence and using that to set the peak timing when
beginning the peak integration in chromatoPy. Moreover, by significantly reducing analysis time, potentially

Figure 2. Comparison of chromatoPy and manual integration methods by (a) scaling peak areas to the maximum value
observed across all samples, and (b) the fractional abundance of Glycerol dialkyl glycerol tetraethers (GDGTs) in each
sample. Gray lines indicate propagated uncertainty for individual peaks calculated using chromatoPy. (c) Peak areas
independently integrated by two users using chromatoPy. (d) Associated fractional abundances of GDGTs from each user's
integration. Red x's highlight samples where users identified different peaks for one or more GDGTs (n = 9 peaks in 9
samples), resulting in discrepancies in fractional abundances.
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unconstrained sources of uncertainty can be quantified via rapid replicate analyses and incorporated into the
parameter uncertainty (Section 3.4).

3.3. Peak Area and Fractional Abundance Comparison

In general, peak areas calculated using chromatoPy yield similar results to those manually integrated in Chem-
Station. Considering the scaled peak areas and fractional abundances of all GDGT structures (Figures 1a and 1b;
2 F, G) the two methods yield a Pearson's correlation coefficient greater of 0.998 (p < 0.001), and 0.999,
respectively, indicating that chromatoPy offers comparable peak measurements to manual integration. Impor-
tantly, the agreement of the calculated peak area does not decay when considering smaller peaks. For example,
when considering individual GDGT types, lower‐abundance GDGTs (e.g., IIIc and IIIcʹ) yield similar correlation
statistics to higher‐abundance GDGTs (e.g., Ia, GDGT‐4; Figure 4).

The similarity between scaled peak areas derived from manual integration and ChromatoPy is further supported
by a Wilcoxon signed‐rank test for differences between median values. For the fractional abundance of all
isoGDGTs, no significant difference was detected (p= 0.84). Significant differences were observed for the scaled
peak areas of isoGDGTs and the scaled peak areas and fractional abundances of brGDGTs (p < 0.001), but the
median differences were negligible (− 8.3 × 10− 6, − 2.3 × 10− 5, and 2.1 × 10− 4, respectively).

When considering individual GDGT types, most show comparable scaled peak areas and fractional abundances
between the two methods (Figure 3). The differences in tetramethylated brGDGTs and isoGDGTs are either not
significant or can be explained by uncertainty, indicating no systematic difference in peaks size (Table 5, Table S1
in Supporting Information S1). This is consistent with the expected performance of chromatoPy's peak fitting
algorithm, as these compounds are generally less affected by co‐elution. Importantly, this suggests that Chro-
matoPy's preprocessing steps do not introduce substantial biases into the ultimate peak area estimation.

By contrast, the fractional abundances and scaled peak areas of the 5‐ and 6‐methyl penta‐ and hexa‐methylated
brGDGTs, display systematic differences that cannot be explained by uncertainty alone (Table 5, Table S1 in
Supporting Information S1). Specifically, ChromatoPy tends to assign smaller areas to the 5‐methyl brGDGTs
and larger areas to the 6‐methyl brGDGTs, which are typically smaller. A similar pattern is observed for the IIIa
and IIIaʹ peaks, though in those cases the differences largely fall within uncertainty. This behavior is consistent

Figure 3. Validation metrics of peak integration. Left column illustrates inter‐user comparisons of peak areas calculated using chromatoPy. Percent differences in peak
areas are shown for (a) all detected peaks and (b) peaks with areas smaller than 5,000 amplitude∙minutes. Data points are displayed as diamonds, color‐coded based on
whether the 1‐σ uncertainty is less (black) or greater (red) than the difference in replicate measurements. (c) Histogram displaying the number of peaks within each
category, organized into 250 amplitude∙minute‐wide bins (same color scheme as A–B). Center column depicts relative uncertainty (uncertainty divided by peak area) in
peak area measurements for all peaks (d) and peaks with areas less than 5,000 amplitude∙minutes (e). Histogram of relative peak area uncertainties (binned in 5%
intervals), excluding bins with zero counts (f). Color coding carries over from panels A–C, with black and red reflecting peaks with 1‐σ uncertainties less than (black) or
greater than (red) the difference in replicate integrations by multiple users. Right column compares scaled peak areas calculated manually and using chromatoPy.
(g) Percent differences of scaled peak areas are shown for all peaks and (h) peaks with a scaled area below 0.01.
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with expectations from Gaussian deconvolution: the multi‐Gaussian model can resolve and allocate more area to
smaller, partially overlapping peaks that manual integration may under‐represent, while proportionally reducing
the area assigned to larger peaks. Similar systematic differences have been reported previously. For example,
Fleming and Tierney (2016) found that a single‐Gaussian model produced larger peak areas for brGDGTs relative
to manual integration, while no differences were observed for isoGDGTs. Although our data set differs from that
of Fleming and Tierney (2016), our results are consistent with the expectation that GDGTs less prone to co‐
elution, such as Ia, Ib, Ic, and GDGT‐4, tend to yield slightly larger peak areas because they can be accurately
represented by a single‐Gaussian distribution. In contrast, compounds more affected by co‐elution are decon-
volved by chromatoPy's multi‐Gaussian fitting algorithm, leading to a redistribution of peak area across over-
lapping peaks. This redistribution is illustrated in sample H1801000260 (Figure S2 in Supporting
Information S1), which displays brGDGTs IIbʹ and IIIbʹ co‐eluting with neighboring peaks. ChromatoPy's
deconvolution assigns a greater proportion of area to these peaks, resulting in scaled peak areas that are 53.6% and
36.5% larger than their manually integrated replicates, respectively.

Although measurable, these differences have limited influence on more abundant compounds. For example,
GDGT‐4, GDGT‐0, IIIa, and Ia remain virtually unaffected (Table 5). The most abundant GDGTs influenced by
this bias are IIa and IIaʹ, which have median fractional abundances of 0.146 and 0.095, respectively. Yet the
percent differences between methods for these compounds (− 3.5% and 8.2%, respectively) translate to shifts of
less than 0.01 in fractional abundance space. Thus, while the bias is detectable at the level of individual peak
comparisons, its overall magnitude is small and unlikely to meaningfully affect downstream interpretations.

It is also important to note that direct comparisons between chromatoPy and manual integration are complicated
by the inherent subjectivity of manual integration. In practice, peak truncation decisions vary between analysts
and lack a predictable directional bias, whereas ChromatoPy applies a consistent, reproducible fitting procedure.
Taken together, these results demonstrate that ChromatoPy provides highly comparable peak areas to manual
integration, with systematic but minor differences for certain brGDGTs. The ability of ChromatoPy's multi‐
Gaussian fitting algorithm to objectively deconvolve co‐eluting peaks underscores its utility for biomarker
analysis.

Figure 4. Comparison of scaled peak areas for individual Glycerol dialkyl glycerol tetraether structures using manual and chromatoPy integration.
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To assess whether these small differences in peak areas influence downstream proxies, we compare the
temperature‐sensitive methylation of branched tetraethers index (MBTʹ5Me; De Jonge et al., 2014) for each sample
(Figure 5). Across all samples, the median of differences between MBTʹ5Me values is ∼0.004 with a 95th
percentile range of − 0.024 to 0.021. AWilcoxon signed‐rank test indicates that MBTʹ5Me values calculated using
peaks quantified via chromatoPy are significantly larger (p < 0.001) than those quantified using manual inte-
gration. This difference is consistent with Wilcoxon signed‐rank tests of the fractional abundances of GDGTs
quantified via the two integration methods. In comparison to the manual method, chromatoPy produces smaller
fractional abundances of GDGTs in the denominator of the MBTʹ5Me index (IIIa, IIIb, and IIIc), which would
increase the resultant MBTʹ5Me value.

While these results indicate a small but systematic offset in MBTʹ5Me values, the magnitude of these differences
remains minor. Importantly, the impact on MBTʹ5Me falls well within the uncertainty bounds of published
temperature calibrations. Using the slopes from four previously published temperature–MBTʹ5Me calibration
models, the translated median difference corresponds to at most 5.1% of the reported calibration uncertainty. We
compared the RMSE values of these temperature–MBTʹ5Me calibrations to the 1‐σ standard deviation of the
MBTʹ5Me differences between manual and chromatoPy integration (Figure 4, Table 6), which represents at most
13.6% of the model uncertainties (Table 6; De Jonge et al., 2014; Naafs et al., 2017; Russell et al., 2018; Otiniano
et al., 2023). The subtle differences between manual and chromatoPy‐derived MBTʹ5Me values are therefore
unlikely to measurably influence climatic interpretations based on the GDGT proxy. This consistency reinforces
the reliability of chromatoPy as an efficient and reproducible alternative to manual peak integration without
compromising accuracy.

Table 5
Wilcoxon Signed‐Rank Test Results Comparing Fractional Differences Quantified With chromatoPy Versus Manual
Integration

GDGT type
Wilcoxon
Statistic P‐value Median difference Percent difference Percent uncertainty

Ia 1,288 0.209 3.72E− 04 0.247 1.54

Ib 1,081 0.022 1.87E− 04 0.587 1.469

Ic 761 <0.001 1.52E− 04 1.379 1.835

IIa 661 <0.001 − 5.19E− 03 − 3.549 1.262

IIb 1,041 0.043 − 6.91E− 04 − 1.356 2.389

IIc 1,278 0.438 − 4.61E− 05 − 0.454 2.31

IIIa 799 <0.001 − 1.50E− 03 − 0.458 1.549

IIIb 1,036 0.058 − 1.59E− 04 − 0.857 1.947

IIIc 874 0.098 − 6.56E− 05 − 0.75 2.161

IIaʹ 314 <0.001 7.85E− 03 8.225 1.72

IIbʹ 271 <0.001 3.46E− 03 16.687 2.757

IIcʹ 66 <0.001 8.75E− 04 29.236 3.347

IIIaʹ 958 0.009 5.82E− 03 6.356 2.428

IIIbʹ 296 <0.001 2.10E− 03 25.742 4.431

IIIcʹ 224 <0.001 1.80E− 04 9.201 3.008

GDGT‐0 1,544 0.282 − 5.43E− 04 − 0.144 0.814

GDGT‐1 1,775 0.964 2.28E− 04 0.369 1.496

GDGT‐2 1,364 0.119 3.90E− 04 1.328 2.521

GDGT‐3 1,380 0.071 − 2.42E− 04 − 3.494 2.203

GDGT‐4 1,381 0.072 2.03E− 03 0.392 0.679

GDGT‐4ʹ 886 0.041 − 4.92E− 04 − 8.223 8.359

Note. Reported values also include the median difference, the median percent difference, and the absolute median percent
uncertainty (calculated as the uncertainty relative to the chromatoPy‐derived fractional abundance).
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Figure 5. The impact of integration method on the MBTʹ5Me index. (a) Histogram (gray bars) and Gaussian kernel density
estimate (black line) of the residuals in MBTʹ5Me (ΔMBTʹ5Me) between manual and chromatoPy integration. (b) Horizontal
red bars show uncertainties of the temperature‐MBTʹ5Me calibration models, converted into MBTʹ5Me space.

Table 6
Slopes and Associated Uncertainties From Published MBTʹ5Me–Temperature Calibrations, With Corresponding References

Temperature ‐ MBTʹ5Me relationship (°C) Uncertainty (°C) Median translated temperature difference [1‐σ] (°C) Citation

40.01 4.7 0.15 [0.42] Naafs et al. (2017)

32.42 2.47 0.12 [0.34] Russell et al. (2018)

31.45 4.8 0.12 [0.33] De Jonge et al. (2014)

14.75 1.16 0.06 [0.16] Otiniano et al. (2023)

Note. These slopes were applied to differences inMBTʹ5Me values derived from chromatoPy and manual integration methods, allowing calculation of the median and 1‐σ
temperature ranges.
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3.4. Peak Area Uncertainty

ChromatoPy offers the first methodology that constrains some aspects of uncertainty when integrating GDGT
peaks. In general, the uncertainties related to the Gaussian fitting parameters are low.When ranking peaks by their
relative uncertainty, the 90th percentile range spans 0.8%–14.0% (Figure 3d–3f). In other words, the uncertainty
band for a typical peak will represent only a small fraction of the integrated area. This generally low level of
uncertainty also indicates that 1,000 iterations are sufficient for the multi‐Gaussian fitting algorithm.

By contrast, the peaks with the highest relative uncertainty (i.e., above the 90th percentile) exhibit relative un-
certainties ranging from 14.0% to 126.3%, consistent with a small subset of peaks that are either extremely small
or poorly resolved (Figure 3d). These larger uncertainties are an important metric, identifying instances where
chromatoPy's integration algorithm poorly fit a Gaussian model to the signal. In many cases, high relative un-
certainty likely reflects attempts to integrate noisy data with low signal‐to‐noise ratios. Consistent with this
interpretation, the median peak area of the upper 10% uncertainty group is only 163 amplitude∙minutes, nearly an
order of magnitude smaller than the median 1,410 amplitude∙minutes observed for the lower 90%. In a few in-
stances, peaks with large areas have high uncertainties. For peaks larger than 400 amplitude∙minutes, 38 have
relative uncertainties greater than 20%, and these generally are due to co‐eluting iso‐ or brGDGTs. In such cases,
chromatoPy can still provide an estimate of peak area, but improved chromatographic separation would reduce
uncertainty. A separate source of large‐peak uncertainty arises in highly concentrated samples, where peak
distortion (e.g., fronting) compromises the assumed Gaussian peak shape. For example, the IIa peak from sample
H2307066 has an associated relative uncertainty of ∼40%, which likely owes to fronting. High uncertainties
should therefore be interpreted as a flag to re‐examine the raw chromatogram and, if necessary, reprocess or
reanalyze the sample.

3.5. Variance

Variance in peak areas provides a direct measure of the stability of peak integration and captures sources of
variability beyond user decisions. In chromatoPy, uncertainty estimates already indicate that smaller peaks are
subject to disproportionately higher variance relative to larger peaks (Figures 3a, 3b, and 3d). However, these
uncertainties cannot fully account for the replicate differences observed among small peaks, pointing to an
additional, un modeled source of variability. A similar size‐dependent pattern appears when comparing chro-
matoPy and manual integrations of scaled peak areas, where smaller peaks show a wider array of percent dif-
ferences relative to larger peaks (Figures 3f and 3g). This behavior is consistent with baseline noise, as baseline
fluctuations constitute a minor fraction of larger peaks but grow in effect with smaller peaks. Because chro-
matoPy's present error budget includes only the Monte‐Carlo spread of Gaussian fit parameters, baseline noise is
effectively “missing” from the model. Therefore, incorporating a baseline term into the fitting algorithm, and
therefore the parameter covariance matrix, would reduce the mismatch between algorithmic and empirical
variance and will be incorporated in a future release of this product.

4. Conclusion
ChromatoPy offers a fast and effective method for the quantification of GDGTs measured via HPLC‐MS. We
developed our method assuming peak areas conform to a Gaussian distribution, thus facilitating integration via
iterative fitting of Gaussian functions. We advance previous approaches by modeling multi‐Gaussian functions
that permit de‐convolution of co‐eluting peaks. This iterative curve‐fitting approach also facilitates the first
opportunity to systematically report GDGT peak area uncertainties. Although this approach does not yet capture
all sources of uncertainty related to peak fitting, a future release of this package will improve on these methods
without increasing the time required for processing, which is already an order of magnitude faster than manual
integration.

Of particular importance, we establish standardized methods for baseline estimation and minimum peak
amplitude thresholds, which will help improve comparability among analysts and laboratories. By combining de‐
convolution, quantified uncertainty, and standardized decision rules in an open‐source package, chromatoPy
enhances the reproducibility of GDGT quantification, an essential step toward more consistent proxy calibrations
and the development of reliable, community‐scale paleoclimate and biogeochemical data compilations. Building
on this foundation, we will expand chromatoPy's capabilities to accommodate a wider range of chromatographic
data, further establishing it as a robust, user‐friendly tool for reproducible, high‐throughput biomarker analysis.
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